



100万吨/年焦炉_冷鼓工艺流程图
控制方案
典型的炼焦过程可分为焦炉和冷鼓两个工段。这两个工段既有分工又相互联系,两者在地理位置上也距离较远,为了避免仪表的长距离走线,设置一个冷鼓远程站及给水远程站,以使仪表线能现场就近进入DCS控制柜,更重要的是,在集气管压力调节中,两个站之间有着重要的联锁及其排队关系,这样的网络结构形式便于可以实现复杂的控制算法。
控制系统网络结构
集气管“
4+1
”优化控制方案
图中P1至P4是集气压力值,是本系统控制之重点,P是集气管压力之平均值,它反映了集气管的一般工作状态,在“4+1”控制中(“4”代表四个集气管,“1”代表选择大回流调节阀RB还是液力偶合器EF控制,两者必选其一),时间分配器根据集气管压力的变化:偏差和偏差变化率,根据液偶调速慢的特点,适当地分配大回流与液偶的调节量。集气管压力变化的特点是:瞬态变化大,调节时互相产生耦合,本控制算法设计有一个解耦算法,可减少或消除耦合,以保证各个单回路系统能独立地工作,该控制算法采用经典控制理论与离散控制理论相结合的优化控制方法,取得了良好的控制效果。
集气管压力调节优化控制示意图
联锁方案
报警、联锁和停车系统是为提高工艺生产装置的安全性而设置的特殊程序,本控制系统将联锁控制分为三个部分:冷鼓工段联锁控制、鼓风机联锁控制、鼓风机油泵联锁控制。
冷鼓工段联锁结构图
控制效果分析
影响集气管压力的因素是多样的,诸如装煤、平煤、推焦和交换机换向等,当这些因素暂时不存在时,焦炉工艺系统较为稳定。当工艺系统处于装煤、平煤、推煤或换向机换向等情况中的一种或几种时,系统会出现波动期,控制曲线呈现脉冲状,这是因为控制系统在迅速响应,将其压力往给定值方向上调整,经过数次调节,系统再次进入稳定期,周而复始。 从控制效果图中可以看到,带变频的控制效果要优于带大回流调节阀的情况,原因是显而易见的,在变频器控制下的电机调节动态性能要好于调节阀,然而,最新设计的百万吨级的冷鼓系统都采用了通过液力偶合器进行调速的鼓风机,其调速性能则慢得多,而且工艺上并不允许对此进行频繁调节,因此,采用大回流调节阀参与集气管压力调节则是目前的一种合理选择。在目前这两种控制结构下,其稳定期的控制偏差范围是±20Pa;波动期的偏差控制范围是±50Pa,但时间持续较短,完全可以满足工艺上的要求。








硫铵工艺流程图
脱硫及硫回收工艺流程图
鼓风冷凝工段流程图
洗氨蒸氨工段流程图
洗苯脱苯工段流程图
控制方案 硫铵工段主要有两个控制回路:进沸腾干燥器温度调节和蒸氨塔顶汽温度调节,通过检测进沸腾干燥器的温度和蒸氨塔顶汽温度和给定值进行比较后调节其进入的蒸汽流量来实现:采用常规的PID控制即可。

出管式炉富油温度串级调节框图 这里采用内环为出管式炉过热蒸气流量的串级调节,以减少蒸汽压力波动的干扰。 脱苯塔出口油气温度调节采用内环为出管式炉过热蒸气流量的串级调节,以减少蒸汽压力波动的干扰。 另外实际生产过程中,蒸汽压力会有可能大于脱苯塔可承受的最大压力,为保护塔体,在串级调节中增加一个切换,当塔内压力大于某一值的时候,改为以塔压作为调节对象。
脱苯塔出口油气温度串级调节框图
蒸氨
工艺概述
蒸氨工段主要完成对来自于炼焦配合煤中的剩余氨水进行蒸馏的过程。






蒸馏过程控制曲线
焦油加工
工艺概述 焦油是煤在干馏和气化过程中获得的液体产物,它是一种具有刺激臭味的黑色或黑褐色的粘稠状液体。到目前为止,煤焦油仍然是很多稠环化合物和含氧、氮和硫的杂环化合物的唯一来源。煤焦油产品已经在化工、医药、染料、农药和炭素等行业中得到广泛应用。 目前采用较多并且比较成熟的焦油蒸馏工艺是:单塔式焦油管式炉蒸馏工艺。
单塔式焦油管式炉蒸馏工艺流程图
控制方案
管式炉出口温度控制原理框图 典型控制环节: FT1:入管式炉原料焦油流量控制。 TT: 管式炉焦油出口温度控制:这是蒸馏过程中最重要的控制环节。采用串级控制,T2为炉膛温度,作为串级控制的内环,它反应了炉膛温度的快速变化,T1为管式炉出口温度,作为内环,变化较慢,产生精调作用,理想情况下控制误差仅在1至2℃范围内,完全可以满足工艺控制要求。 TT3:二段蒸发器塔顶温度调节,控制塔顶组分,单回路。 TT4:馏分塔顶温度调节,控制塔顶组分,单回路。 LT1:一段蒸发器塔底液位调节,控制塔底液位,由于物料在工艺管线中行走较长,控制上滞后较大,但可以控制在合适的范围之内,单回路。 LT2:馏分塔低底液位调节,控制塔底液位,在自动状态下应设置液位控制下限,不能全关,防止调节阀堵死,单回路。 FT2:三混油流量控制,单回路。
工业萘
萘是有机化学工业的重要原料,萘主要存在于煤焦油中,以焦油加工切取的含萘宽馏分再进行精馏就可获得含萘95%的工业萘。
双炉双塔工业萘生产控制流程 典型控制环节: TRB,TRR:进工业萘初馏管式炉和精馏管式炉煤气流量调节,目的是控制管式炉物料出口温度,同时也稳定了塔底温度,该环节采用串级控制,炉膛温度为内环,物料出口温度为外 环。

焦油蒸馏主控画面
工业萘主控画面
焦油蒸馏综合趋势
工业萘精馏综合趋势
控制效果分析 焦油加工过程中的核心控制是管式炉出口温度控制,经我DCS调节该出口物料温度的偏差可控制在±1至2℃左右,完全满足生产工艺的要求,从趋势图中可以看出,其它相关工艺也运行平稳。
沥青改质
工艺概述 焦油沥青在常温下是黑色固体,按其软化点的高低可分为低温、中温和高温沥青三种,由于中温沥青软化点低,β树脂含量低,用其做黏结剂制取的各类电极质量较差,不能满足日益发展的电炉炼钢、制铝工业及炭素工业的需求,而中温沥青通过改质可以获得软化点高和β树脂含量高的优质沥青制品。
沥青改质生产流程(真空闪蒸法也称加压热聚合法)
控制方案 由焦油工段来的中温沥青用输送泵打入反应釜,其中的沥青被加热到390至400℃,并由釜中的搅拌机进行搅拌,在釜内发生聚合反应,反应时间控制在规定的时间内,然后沥青被吸入闪蒸塔内,调节蒸气喷射泵,保持闪蒸塔内合适的负压(负压不同,软化点也不同),塔顶闪蒸出改质沥青中的油份,当需要降低软化点时,可以向闪蒸塔内喷入闪蒸油,这就形成了图中的反馈支路。塔底为改质沥青,经冷却后打入沥青高置槽形成改质沥青产品。 典型控制环节: TT1:反应釜温度调节,这是一个釜内温度与炉膛温度形成的串级控制,炉膛温度为副回路,釜温为主回路,由于该过程是一个聚合反应,所以温度要严格控制。

沥青改质主控画面
沥青改质控制过程历史趋势
2025-12-12
2025-12-12
2025-12-12
2025-12-12
2025-12-15
2025-12-16
10月31日,以 “解锁・下一步” 为主题的2025红帽论坛暨媒体沟通会在北京JW万豪酒店盛大召开。红帽通过核心主旨演讲、重磅新品发布、权威报告解读及高层对话,全方位展现了其以开源技术破解行业痛点、引领企业数字化转型的实力与愿景,为 AI 时代的企业创新注入强劲动力。
作者:何发
评论
加载更多